Support Vector Machines in hyperspectral imaging spectroscopy with application to material identification
نویسندگان
چکیده
A processing methodology based on Support Vector Machines is presented in this paper for the classification of hyperspectral spectroscopic images. The accurate classification of the images is used to perform on-line material identification in industrial environments. Each hyperspectral image consists of the diffuse reflectance of the material under study along all the points of a line of vision. These images are measured through the employment of two imaging spectrographs operating at Vis-NIR, from 400 to 1000 nm, and NIR, from 1000 to 2400 nm, ranges of the spectrum, respectively. The aim of this work is to demonstrate the robustness of Support Vector Machines to recognise certain spectral features of the target. Furthermore, research has been made to find the adequate SVM configuration for this hyperspectral application. In this way, anomaly detection and material identification can be efficiently performed. A classifier with a combination of a Gaussian Kernel and a non linear Principal Component Analysis, namely k-PCA is concluded as the best option in this particular case. Finally, experimental tests have been carried out with materials typical of the tobacco industry (tobacco leaves mixed with unwanted spurious materials, such as leathers, plastics, etc.) to demonstrate the suitability of the proposed technique.
منابع مشابه
Identification and Adaptive Position and Speed Control of Permanent Magnet DC Motor with Dead Zone Characteristics Based on Support Vector Machines
In this paper a new type of neural networks known as Least Squares Support Vector Machines which gained a huge fame during the recent years for identification of nonlinear systems has been used to identify DC motor with nonlinear dead zone characteristics. The identified system after linearization in each time span, in an online manner provide the model data for Model Predictive Controller of p...
متن کاملApplication of Artificial Neural Networks and Support Vector Machines for carbonate pores size estimation from 3D seismic data
This paper proposes a method for the prediction of pore size values in hydrocarbon reservoirs using 3D seismic data. To this end, an actual carbonate oil field in the south-western part ofIranwas selected. Taking real geological conditions into account, different models of reservoir were constructed for a range of viable pore size values. Seismic surveying was performed next on these models. F...
متن کاملMulti-Channel Morphological Profiles for Classification of Hyperspectral Images Using Support Vector Machines
Hyperspectral imaging is a new remote sensing technique that generates hundreds of images, corresponding to different wavelength channels, for the same area on the surface of the Earth. Supervised classification of hyperspectral image data sets is a challenging problem due to the limited availability of training samples (which are very difficult and costly to obtain in practice) and the extreme...
متن کاملFace Recognition using Eigenfaces , PCA and Supprot Vector Machines
This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...
متن کاملRoof Surface Classification with Hyperspectral and Laser Scanning Data – An Assessment of Spectral Angle Mapper and Support Vector Machines
The urban environment is characterised by a variety of different surface materials. For the discrimination of urban materials, hyperspectral imaging proved a valuable tool. In this study, two methods for classification, Spectral Angle Mapper and Support Vector Machines, are compared on a hyperspectral dataset to derive a detailed map of roof materials. Spectral similarity of different materials...
متن کامل